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Abstract-A new thermodynamics of open thermochemical systems and a variational principle of virtual 
dissipation are applied to the finite deformation of a solid coupled to thermomolecuku diffusion and 
chemical reactions. A variational derivation is obtained of the field differential equations as well as 
Lagrangian equations with generalized coordinates. New formulas for the affinity and a new definition of 
the chemical potential are presented. An outline is given of an unusually large field of applications, such as 
active transport in biological systems, finite element methods, plastic properties as analogous to chemical 
reactions, phase changes and recrystalization, porous solids, heredity and initially stressed solids. A new 
and unified insight is thus provided in highly diversified problems. 

1. INTRODUCTION 

The variational Lagrangian thermodynamics formulated initially in 19%%[I, 21 was extended 
more recently to nonlinear thermorheology[3]. At the same time a new approach to the 
thermochemistry of open systems was developed [4-6] which provides a new foundation of 
classical thermodynamics and avoids the traditional difficulties and ambiguities of Gibbs’ 
classical treatment [7]. 

This paper is an application of this new thermodynamics to the problem of finite deformation 
of a solid, with substances in solution, subject to chemical reactions and thermomolecular 
diffusion. Two special cases of this problem have been developed earlier. One of these excludes 
chemical reactions and is presented in the context of the similar problem for porous solids[8]. 
The other includes chemical reactions but assumes small perturbations of a solid in the vicinity 
of a state of equilibrium with initial stress[9]. 

The basic concepts of the new thermodynamics of open systems such as the thermobaric 
potential are briefly recalled in Section 2. Their application to chemical reactions and a new 
expression for the affinity are developed in Section 3 along the lines developed earlier [4-6]. This is 
applied in Section 4 to an open solid undergoing homogeneous deformations while coupled 
chemical reactions are occurring internally. The analogy with nonlinear thermoviscoelasticity is 
pointed out. 

The basic variational principle of virtual dissipation is formulated in Section 5 in the context 
of a deformable solid continuum with thermomolecular diffusion and chemical reactions. The 
differential field equations which govern the evolution of the continuum are derived satiation- 
ally in Section 6. 

The foregoing results are based entirely on classical thermodynamics. As shown in Section 
7, two additional axioms, one of which involves Nernst’s third principle, lead to a new definition 
of the chemical potential which bypasses the need of introducing the principles of quantum 
statistics. A complementary form of the field equations are then derived in Section 8. 

Application of the principle of virtual dissipation in Section 9 to a system described by 
generalized coordinates as unknowns, leads directly to Lagrangian equations for those un- 
knowns without recourse to the field equations. In Section 10 it is pointed out how the 
Lagrangian approach is particularly suited to the analysis of biological systems as already 
illustrated for the treatment of active transport in biological membranes[6]. Section 11 recalls 
that Lagrangian methods provide the foundation of a large variety of finite element methods. 
The analogy between plasticity and chemical reactions from the standpoint of internal coor- 
dinates is brought to light in Section 12. How the problems of creep and recrystalization under 
stress coupled to phase changes may be treated by the present methods is briefly discussed in 
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Section 13. Earlier treatments of porous solids, the thermodynamics of heredity and the solid 
under initial stress are recalled in Sections 14-16. The case of a solid under initial stress is not 
treated as a bifurcation and thereby is more general since it is not necessary to assume the 
existence of an unstressed state. 

2.NEWTHERMODYNAMICSOFANOPENCELL 

A new approach to the thermodynamics of open systems has been introduced and discussed 
extensively in some earlier publications [4-6]. The development has been accomplished entirely 
within the framework of classical procedures and without recourse to the principles of 
statistical mechanics. The results are directly applicable to a deformable solid with pure 
substances in solution as already described in the similar case of a porous solid saturated by 
viscous fluids[8]. We shall briefly rederive here the essential concepts by using a slightly 
different and more direct approach. 

We start by considering a cell C, called a primary cell, which is first assumed rigid, 
containing a mixture of substances k at the temperature T. To this cell we adjoin large rigid 
reservoirs C,k called supply cells, each containing a pure substance k at the pressure and 
temperature pOTO the same for all supply cells. It was shown that this condition of uniform 
values p. and To, for C,, is required in order to avoid Gibbs’ paradox[4, 51. We also adjoin to 
this system a large isothermal rigid reservoir at the temperature TO called a thermal well, ZW. 
The total system C, +Zk Csk + Tw is called a hypersystem while the subsystem C, + Xk Csk 
will be referred to as a collective system. 

We have considered reversible transformations of this hypersystem whereby masses and 
heat are transferred within the system by performing external work on the system. This implies 
the use of reversible heat pumps. The supply cells Csk and the thermal well are assumed large 
enough so that p. and To remain constant in the process. 

The increase of internal energy dp of the hypersystem from a given initial state defines what 
we have called the collective potential of the primary cell C,. The justification for this definition 
is derived from the fact that dp is determined completely by the state variables of C,. This can 
be seen as follows. 

We shall first consider the case where the primary cell is rigid and contains a mixture of non 
reacting pure substances k at the temperature T. The cell C, may be a solid in which the 
various substances are in solution. The case of reacting substances is considered in the next 
section. 

The mass mk of each substance in C, is written 

where mOk is the initial mass and Mk is the mass of each of the substances acquired by the open 
cell during a transformation. The state variables of C,, are the masses Mk, and the temperature 
T. Since the masses Mk are assumed to be provided entirely by the supply cells Csk, the same 
variables Mk are also the state variables of the supply cells. Therefore the state of the collective 

system C,, +i C,k is determined completely by the variables Mk and T. As a consequence the 

increase of collective energy % and of Collective entropy 9 of the system CP +i Csk may be 

expressed as functions of Mk and T. We write 

% = %(Mk,T) 

Y = Y(Mk,T). (2.2) 

We have defined the collective potential dp as the increase of energy of the hypersystem 

C, +i Csk + Tw in the reversible transformation. Its value is 

.$=%+-Ho (2.3) 

where Ho is the heat energy acquired by the thermal well. Since the transformation is reversible 
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there is no entropy change of the hypersystem, C, + i C,k + TW, hence 

and 

883 

(2.4) 

8; = “11 - T,,Y. (2.5) 

Since % and Y are functions of the state variables Mk and T of the primary cell the collective 
potential 2 is also determined by the same variables. 

d = bWk,T). (2.6) 

Because of these properties we may drop the term collective and refer to %, Y and dp respectively 
as the cell energy, the cell entropy and the cell potential, keeping in mind of course that they are 
defined here in a new way as collective concepts. 

The thermodynamic function (2.5) was introduced as a fundamental potential by the author 
[1,2] in a more restricted context and applied by Mindlin to piezoelectric crystals [lo]. 

According to eqn (2.1) 

Mk = mk - mok. (2.7) 

Hence we may write 

a = a(mk,T), y = .%mk,T), d =$+G,T) (2.8) 

as functions of the temperature and the total masses mk of the substances k in solution in the 
cell. 

In order to evaluate the changes of the thermodynamic functions %, Y’, 8; associated with a 
change of state of the open cell C, we have introduced the new key concept of thermobaric 
transfer [4-6] described as follows. Consider a pure substance k in equilibrium with the primary 
cell C, through a semipermeable membrane. In this equilibrium state the substance k is at a 
pressure pk and at the same temperature T as C. The pressure pk of the substance under these 
conditions is called the partial pressure of the substance in the mixture. The process of 
thermobaric transfer of a mass dMk from the supply cell Csk to the primary cell C, is a 
reversible process by which the mass is first extracted from the supply cell, compressed and 
heated to the partial pressure pk and temperature T and then injected reversibly and adiabatic- 
ally through the semi-permeable membrane. The heating along this path is accomplished by a 
reversible pump operating between TW and dMk and injecting a differential amount of heat 
into dMk at each step. The process is described in more detail in Refs. [4, 51. 

The increase of COkCtiVe energy and entropy of the system C, + 5 C& in this process of 
thermobaric transfer are written 

d% = & dMk 

dY = & dMk (2.9) 

where 

Pk= 
& = I 

Pk= 

PO=O d’ k Sk = I PO=O dF k. (2.10) 

The differential d& is the increment of entropy per unit mass of substance k at each step of 
the thermobaric transfer. Similarly 

(2.11) 
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is the increment of enthalpy per unit mass of each substance at each step, at the variable 
pressure pi variable density p; and variable temperature T’ along the path of integration. 

The variables 4 .and Sk are independent of the path of integration and have been called 
respectively the relative specific enthalpy and entropy of the substance in C,. In contrast with 
traditional procedures these definitions do not involve any undetemined constants. 

The change in cell potential corresponding to the thermobaric transfer is according to (2.5) 

dj=d%-T,,dY. (2.12) 

Substitution of the values (2.9) yields 

d$ = & dMk (2.13) 

where 

has been called the therrnobaric potential. 
From the definition of 9 we note that +k represents the external work required for the 

thermobaric transfer of a unit mass of the particular substance. This may be verified by 
introducing the values (2.10) of & and Sk and putting 8’ = T’ - To. We obtain 

(2.15) 

The first term represents the work of the pressure on the unit mass including the negative work 
of extraction from the supply cell and the positive work of injection into C,. The second term 
8 d& is the work of the heat pump at each step along the path. Hence & is effectively the 
external reversible work required in the thermobaric transfer. 

If several masses are injected we write 

(2.16) 

we have assumed that no additional heat is added to C, during the reversible injection of the 
mass dMk. Consider now that by using a heat pump operating between C, and TW we inject 
reversibly into C, an amount of heat T dsT at the same time as the masses dMk. We obtain 

(2.17) 

dY = e Sk dM’ + dsT. (2.18) 

Substitution in expression (2.12) yields the increase of cell potential. 

dj = 2 $k dMk + 0 d.sT (2.19) 

where 

8 = T-To. (2.20) 

Again here we recognize the work 0 dsT accomplished by the heat pump to inject the heat 
T dsT into C,, operating between the temperatures TO and T. 

The variable dsT is not a state variable. Elimination of dsT between eqn (2.19) and eqn (2.18) 



Variational irreversible thermodynamics of physical-chemical solids with finite deformation 885 

yields 

(2.21) 

where 

(2.22) 

was introduced earlier as the convective potential. 
We may obtain the value of dp by integrating (2.19) along any convenient path. For example 

we first integrate at constant temperature T = To then closing the cell (dMk = 0) we raise the 
temperature to T. This yields 

d = f(Mk,T). (2.23) 

The same path of integration may be used to integrate eqn (2.18) for d.Y. We derive 

Y = Y(Mk,T). (2.24) 

We note that along the path of integration the partial pressures pk which appear in the 
differential coefficients are assumed to be known as functions of Mk and T. By eliminating T 
between eqns (2.23) and (2.24) we derive 

9 = B;(MkZ”). (2.25) 

3. NEW CHEMICAL THERMODYNAMICS OF AN OPEN CELL 

The new concepts and results for open systems also lead to a new chemical thermodynamics [4, 
51 which we shall briefly outline. 

These fundamental results are obtained without the use of statistical mechanics. We 
consider again a rigid and open primary cell C, with its adjoined supply cells Csk and its thermal 
well TW. A chemical reaction may now take place between the various substance mixed in C,. 
This chemical reaction is represented by the equation 

dmk=$r’kdt (3.1) 

where ,$ is the reaction coordinate, and dmk are the masses of the various substances 
“produced” by the reaction. The term “produced” is understood in a generalized sense so that 
negative values represent substances disappearing in the reaction. Conservation of mass implies 
the relation 

kdt?lk=O 

hence 

i vk = 0. 

(3.2) 

(3.3) 

Since a chemical reaction is generally irreversible and associated with an entropy production, in 
order to evaluate the collective potential by the procedures outlined above, we must construct a 
system such that the change of state resulting from the chemical reaction may be obtained by 
an equivalent reversible process. 

Such a process may be described as follows. Consider the reaction to occur in a rigid closed 
adiabatic cell. The reaction d[ produces a change of composition and temperature of the cell 
from state (1) to state (2). In order to accomplish the same change of state reversibly we first 
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bring the cell to an intermediate state (1) where the reaction is in equilibrium. This is obtained 
by using thermobaric transfers and heat pumps, while freezing the reaction. At equilibrium we 
allow the reaction d[ to occur thus reaching the state (2’). We then bring the cell to the final 
state (2) again using thermobaric transfers and heat pumps. 

It is important to note that during this reversible process the state of the supply cells is the 
same in the initial and final state since the masses extracted during one part of the process are 
restituted during the other. Hence the change in the collective system is the same as due to a 
reaction in the primary cell alone. 

The work accomplished on the hypersystem during this process is the increase djQ, of cell 
potential. We may write 

d&h = d%h - To dycP,h (3.4) 

where dCh is the increase of internal energy and dYCh the increase of entropy as defined above 
in terms of collective concepts. However when the change occurs in the adiabatic closed cell as 
a chemical reaction, d9& = 0. Hence 

d&h = -To dycP,, (3.5) 

where dSP,h may be interpreted as the entropy “produced” by the reaction. 
Following De Donder [ 1 l] the affinity A is defined by the relation 

dYc,, = $ d[. (3.6) 

Hence 

(3.7) 

In the case of chemical equilibrium dSPch = A = 0. 
On the other hand for an open cell without chemical reaction we denote by dj’ and dY’ the 

values (2.18) and (2.19) found previously. We write 

. 

dY’ = 2 & dMk + dsr. 

When adding a chemical reaction we find 

(3.8) 

(3.9) 

Elimination of dsr between these two equations yields 

(3.10) 

Note that the internal energy does not depend on d5 since for a closed adiabatic cell no energy is 
provided to the cell (dMk = dsr = 0). Hence eqn (2.17) remains valid, i.e. 

d% = 2 & dMk + T dsT. (3.11) 
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Based on these collective concepts and eqns (3.9) we have derived new expression for the 
heat of reaction and the affinity[4-6]. We shall briefly outline this derivation. 

We consider a hypersystem constituted by two rigid cells C, C,, and a thermal well TW. The 
cell C, is the primary cell and Ccs is a cell of composition and temperature such that the 
chemical reaction considered is in equilibrium. We assume a reaction d[ to occur in CD while 
the reverse reaction - d.$ occurs in C,,. As the reaction proceeds we remove the products 
dnu = Vk dt from C,, and inject them by thermobaric transfer into &.-Using a heat pump we 
inject into C, the amount of heat &,r d,$ required to maintain its temperature constant. The 
temperature of C,, is also maintained constant by injecting the amount of heat - hi+ d,$. The 
composition and temperature hence also the pressure of the cells C, and Ceq do not vary. 

The supply cells remain unchanged since they are not involved in the process just described. 
If we denote by d% and d?!Pq the change of energy of CD and C,, respectively, we may write 

d%+daeq =Q (3.12) 

since this is a consequence of the fact that no change occurs in the collective system 

C, + C,, + 5 C&. Applying eqn (3.11) with dMk = - Vk d,$ we obtain 

(3.13) 

where E;14 is the relative specific enthalpy of each substance in CeP We substitute these values 
in eqn (3.12) taking into account the relation 

where pkeq and Tes are the partial pressures and temperature in Gq. We derive 

(3.14) 

(3.15) 

In this expression, obtained earlier [4,51, ip~ is a new concept called intrinsic heat of reaction. It 
is obtained by removing the products as the reaction proceeds at constant temperature. It is 
more representative of the chemical energy than the traditional concept which includes the heat 
of mixing as defined earlier [4, 51. We may write (3.15) in differential form as 

dsr = 2 vk d& (3.16) 

which generalizes completely and rigorously Kirchhofs classical result for the heat of 
reaction [ 121. 

Consider now the entropy change of the collective system C, + Ceq + $ Csk. The changes due 
to C, and Ceq are respectively dY and dYeT Since the collective system does not change we 

write 

dY + dYcq = 0. (3.17) 

Apply the second of eqns (3.9), we write 

k -e 

dY’eq = c ,+‘ks$ d.$ - F d& 
eq 

(3.18) 
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In the second equation, A = 0, since the reaction is in equilibrium. The relative specific entropy 
in Ceq is denoted by SP. We may write the relation 

I 
PIT 

fk - S$ = 

Pkeq eq dS k. 
T 

Taking into account this relation after substituting the values (3.18) into eqn (3.17) we derive 

(3.19) 

This is the new expression for the affinity already obtained in earlier work[4, 51 
Elimination of ip~ between eqns (3.15) and (3.20) yields 

where 

(d& - T’ d&J. 

(3.20) 

(3.21) 

(3.22) 

The value (3.21) of the affinity is a rigorous consequence of classical thermodynamics. We shall 
see below (Section 7) by the use of additional axioms how another expression may be derived 
in more familiar form. 

When several reactions occur in the primary cell C, the mass dmk of a particular substance 
produced by the reactions is 

dmk = f: vkp d5p (3.23) 

where 5, are the coordinates of the various reactions. Adding the effects of each reaction in 
eqns (3.9) we obtain 

where A, is the affinity for each reaction. 
Elimination of dsr between these two equations yields 

(3.24) 

(3.25) 

In these expressions the state variables are [,, Mk and LX The masses Mk added by convection 

are considered as distinct and independent from those dmk = 5 vkp de, produced by the 
reactions and which depend only on the chemical coordinates 5, 

4. THERMOMECHANICSANDCHEMICALKINETICSOFANOPENDEFORMABLECELL 

In the foregoing analysis we have assumed the primary cell to be rigid. We shall now 
consider the cell to be deformable. In the initial state let it be a cube of unit size oriented along 
the coordinate axes Xi. It may be an open cell containing masses mk of pure substances in 
solution at uniform temperature T. The state variables of this cell may be chosen to be the 
reaction coordinates [,, the masses Mk added by convection, the entropy Y and six strain 
components l ii In this section we consider the strain to be homogeneous. 
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There are various ways of measuring the finite strain which have been the object of 
numerous discussions and applications by the author. We shall briefly recall the essential 
concepts. 

The homogeneous deformation and solid rotation of the unit cube are represented by the 
affine transformation 

_fi = (6, + aij) Xj (4.1) 

where Xi and .i?j are the coordinates of material points before and after deformation. 
Strain components may be defined in various ways. Green’s tensor is 

1 1 
Eij =$Uij + Uji)+ TUli * aljs (4.2) 

We may also use a definition introduced in 1939 by the author which avoids many of the 
difficulties attached to Green’s tensor in applications and was developed extensively in a 
monograph[l3]. In this definition we first perform an affinine transformation 

xi = (Sij + Eij) Xj (4.3) 

putting Eir = eji followed by a solid rotation such that the total transformation is equivalent to 
(4.1). The six independent values of Eij define the strain. They are functions of aii. TO the second 
order we derive 

Eij = f?ij + T)ij 

with 

eij = i(tlij + aji), 

Other similar definitions of Eij may be used which are non tensorial. 
dimensions we may write 

For example in two 

Zi = (1 + ElI)Xl+ 2E**X* _zz = (1 + E&X* (4.6) 

(4.4) 

(4.5) 

and use E,~ ez2 cl2 as measure of the finite strain. To the second order their values were shown to 
be[14] 

1 
El1 = all+-& 

2 

1 
~22 = a22 -ja21(%2 + a21) 

1 1 
El2 = p,2+ a21) + Jj a21(a22- ad. (4.7) 

When using the general notation Cij for this case, we put ~21 = 0. A large number of variations of this 
type of definition are possible in two and three dimensions as indicated[l4]. The components thus 
defined are nontensorial but in many problems this is an advantage as illustrated by the derived 
nontensorial concept of slide modulus [ 13,141. The deeper reason for this usefulness is due to the 
fact that the local representation of stress and strain may be tailored to the physical anisotropy 
whether intrinsic or induced by the presence of initial stresses. 
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The notation eii for the strain used hereafter includes any of the various definitions of strain 
described above. The corresponding stress components is defined by virtual work, so that 

represents the virtual work associated with the virtual deformation Seib We omit the summation 
sign although eij is not necessarily a tensor, with the understanding that the summation is 
extended to all six independent variables Eib 

According to the definition of 3 its differential in the case of a deformable cell is obtained 
by simply adding the external work Tii deij performed by the stresses Tij under the conditions 
d[ = dMk = dsT = 0. By adding this term to the values (3.25) of d$ we obtain 

d~=Tiid~ij-~eA,db+~*kdM’+BdsT. (4.9) 
0 

The value of dY remains the same as (3.24) 

Elimination of dsr between (4.19) and (4.10) yields 

(4.10) 

(4.11) 

We note that according to eqns (2.10), (2.15), (2.22) and (3.21) the quantities &, &, $k, e$ and A,, 
are functions of the partial pressures pk and the temperature T. In turn Pk is a function of T, Eij 
and the masses mk of each substance in solution. This mass is given by 

I?lk=mo,,+Mk+ %tP (4.12) 

where mok is the initial value of mk. Hence 4, &, #k, +k and A, may be expressed as functions 
of Eij, T, Mk and LJ,,. 

The values of 2 and Y may be conveniently obtained by integrating (4.9) and (4.10) first at 
constant temperature To then heating the cell to the temperature T maintaining constant the 
values Eij, &, and Mk. We obtain 

Y= Lf(o(Eij, fp Mk, T). (4.13) 

Elimination of T between these two relations yields 

f = $(cij, 5p, Mk, sp) 

where 8; is now a known function of trij, &, M’ and X 
From the differential (4.11) we derive 

(4.14) 

adl - * 
av- (4.15) 

and a fourth one which plays a special role 

adp A _=- 
8-t p (4.16) 
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We denote by Qi the quantities Tii, & and 0 and by qi the corresponding variables 
5f. Equations (4.15) are then written 

a2 agi- - Qi- 

The quantities Qi may be considered as mixed mechanical thermodynamic driving forces which 
are known functions of time imposed by the environment. 

Equations (4.16) and (4.17) are not sufficient to determine the unknown variables qi and & 
because A, is not known. The additional relations are provided by chemical kinetics by which 
reaction rates are given as (the dot denotes a time derivative), 
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Eij, Mk and 

(4.17) 

ip =fp(f$ mk, T). (4.18) 

This may be expressed in terms of eij, Q, Mk and Y using the value (4.12) of mk and writing 

T = T(eij, ~$7 Mk, 9) (4.19) 

obtained by solving for T the value (4.13) of .Y. The rates of reaction become 

ip = fp(Q Zp, Mk, 9). (4.20) 

Equations (4.17) and (4.20) now constitute a complete system for the chemical kinetics of the 
deformable open cell. 

We may write these equations in a form which corresponds to a general Lagrangian 
formulation of irreversible thermodynamic systems. As already pointed out, the affinity is a 
function of the partial pressures and the temperature 

4 = Ap@‘k, T). (4.21) 

Since pk is a function of Eij, mk, T Using eqns (4.12) and (4.19) we write 

Ap = Ap(Eij, 5p, kk, 9). (4.22) 

Elimination of 5, between eqns (4.20) and (4.22) yields 

Ap = %p(Eij, ip, Mk, 99) (4.23) 

where the affinity is now expressed in terms of reaction rates & by what we have called a rate 
function [4-6], .q 

Introducing into (4.16) the value (4.23) of Ap we obtain the system of differential equations 

aB’+%p=o 
@P 

(4:24) 

which govern the time evolution of the open deformable cell. These equations are now in the 
Lagrangian form introduced by the author. A particular case of interest is obtained by assuming 
that the system, while nonlinear and irreversible, is never very far from equilibrium. For such a 
quasi-irreversible system Onsager’s principle [ 15,161 applies to the chemical reactions. 

This is expressed by writing the rate functions in the form 

gp=g 
P 

(4.25) 



892 M. A. BIOT 

where 

D = k 2 bpo(eij, Mk, Y)&&r (4.26) 

is a positive quadratic form in iP with coefficients dependent on the state of the system. 
Equations (4.24) are now 

(4.27) 

For a closed cell (Mk = 0) these equations are the same as obtained in the analysis of 
nonlinear thermoviscoelasticity where the role of internal coordinates is played by the chemical 
variables 5, [3]. 

5. PRINCIPLE OF VIRTUAL DISSIPATION FOR CONTINUOUS SYSTEMS 

We may consider a continuum as a collection of infinitesimal primary cells. An important 
property of the collective potential is its additivity. Hence the collective potential of a 
continuum may be written 

(5.1) 

where 52 is the domain before deformation and 8; is the cell potential per unit initial volume. 
The elementary initial volume is do = dx, dx2 dxg with initial coordinates Xi. Similarly the 
collective energy and entropy are 

(5.2) 

Because of eqn (2.5) we may write 
. 

V = U - T&Y. (5.3) 

We also assume that the continuum is subject to a potential force field such as gravity. The : 
potential field per unit mass is a function %(&) of the coordinates. If we call p the mass per unit 
initial volume at a displaced point I?i the mechanical potential energy of the continuum is 

(5.4) 

We define 

P=V+G (5.5) 

as a mixed collective potential which embodies mixed mechanical and thermodynamic proper- 
ties. 

We now consider the continuum to undergo a completely general transformation which may, 
be irreversible. With a virtual infinitesimal transformation we may write d’Alemberts principle 
as 

(5.6) 
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where 6W is the virtual work of external forces in addition to the potential forces and 41&i 
the virtual work of the inertia forces with generalized inertia forces Ii corresponding to 
generalized coordinates qi. The variables must of course be varied subject to certain constraints 
which we shall specify. Elimination of U between eqns (5.3) and (5.6) yields 

2 I&i + 69 + TOSS = 6 W. (5.7) 

Consider now that there is no variational flow of matter or heat across the boundary of R. In 
this case 6s represents the entropy produced in R. To indicate this we write S* instead of S 
and eqn (5.7) becomes 

2 I&i + S9 + TOSS* = 8 W. (5.8) 

The term TOSS* represents a virtual dissipation and eqn (5.8) is the general form of the principle 
of virtual dissipation [3] generalizing d’Alembert’s principle to irreversible thermodynamic 
systems. 

The principle may be written in an alternate form particularly useful for continuous systems 
as follows. It was shown earlier[3] that we may write 

S$’ + TOSS* = i&S + TW dSZ (5.9) 

where 6s” is the entropy produced and TSs* is the virtual dissipation, both per unit initial 
volume. 

The term &@ is 

(5.10) 

where SR denotes a variation obtained by excluding the variation Ss* of entropy produced. The 
principle of virtual dissipation (5.8) thus becomes 133. 

(5.11) 

Note that T is the local temperature. We have called TSs* the intrinsic dissipation. 
We must now define the variables to be varied and the constraints which they must obey. 

One of the variables is the field of displacements Ui of the solid. The new coordinates become 
S7i = xi + Ui. Another field is the mass displacement vector Mt of each substance relative to the 
solid. It is defined as the total mass which has flowed across a material area initially 
perpendicular to the xi axis and initially equal to unity. It obviously satisfies the mass 
conservation constraint 

Mk = _i!!$. 
I 

(5.12) 

Summation signs are omitted for tensorial quantities. 
An equation of entropy balance is also obtained by considering the rate of increase of 

entropy in an arbitrary domain Q’. It may be written 

(5.13) 

In this equation, h is the rate of the heat acquired per unit initial volume of R’, S’,, is the rate 
of entropy produced per unit initial volume which is not due to pure thermal conduction and 
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S&i! is the rate of convected entropy per unit area of the initial boundary A’. We write 

(5.14) 

where Eii is the rate of heat flow per unit initial area across a face initially perpendicular to Xi. 
By integration by parts eqn (5.13) may be transformed to 

where 

3.T = 5 
I T’ 

(5.17) 

The domain nl being arbitrary the integral (5.15) implies 

(5.15) 

(5.16) 

This generalizes Meixner’s result[l7] which is restricted to thermal flow. Time integration with 
zero initial values yields 

Y=ss*+s (5.19) 

where 

(5.20) 

is the entropy supplied. The vector 5’i is the total entropy displacement due to convection and 
conduction. Relation (5.19) expresses the basic entropy balance, while relation (5.20) is a 
holonomic constraint analogous to (5.12) for the masses. The rate of entropy production S* per 
unit initial volume (5.16) may also be written 

j * = j ;\I= + hij,$TSjT (5.21) 

where hij is the thermal resistivity tensor of a deformed element of solid, relating I& and aT/LJXi. 
The variables Ui, h@, 4 s* and [,, completely define the state of the deformable solid with 

thermomolecular diffusion and chemical reactions. 
The strain components eij may be chosen according to any of the particular definitions 

described in Section 4. They may be tensorial or non tensorial functions of cij. we write 

6j = l ij(&) (5.22) 

with the property of invariance under a rigid rotation. For a non homogeneous deformation aii 
are the gradients. 

alli 

at =ax, (5.23) 
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The total rate of intrinsic dissipation per unit initial volume is the positive definite expression 

TS*=$9Ekp+29 (5.24) 

where %,, is the rate function defined by (4.23) and 9 is a dissipation function 

(5.25) 

which is a quadratic function of n;l,” and Si with coefficients dependent on the local state. This 
quadratic form represents thermomolecular diffusion with the local validity of Onsager’s 
principle[l5, 161. The coefficients C$ represent the coupling between mass and entropy flow 
including entropy convection. 

The virtual dissipation is immediately derived from these results. It is written 

(5.26) 

6. VARIATIONAL DERIVATION OF FIELD EQ_UATIONS FOR COUPLED THERMOMOLECULAR 

DIFFUSION AND CHEMICAL REACTIONS IN A DEFORMABLE SOLID CONTINUUM 

We consider a deformable solid which undergoes a deformation described by the material 
displacement field Ui. The coupled thermomolecular diffusion relative to the solid is described 
by the vectors S’i and MF. The vector S; is the entropy displacement due to conduction and 
convection, while M> is the mass displacement relative to the solid of the various substances in 
solution. The scalar field t,, represents the distribution of chemical coordinates, and s* is the 
entropy produced per unit initial volume. These unknown fields are to be determined as 
functions of the initial coordinates xi and the time t. 

Equations governing these fields are readily obtained by applying the principle of virtual 
dissipation assuming arbitrary variations which vanish at the boundary. In this case the virtual 
work of external boundary forces vanishes (6W = 0) and the variational principle (5.11) is 
written 

k I&i + I, [S& + 6(@) + TSs*] dR = 0. 

The variation && is obtained by varying only eij, Mk, & and s (excluding s*). We find 

According to (4.15) and (4.16) this may be written 

Sd = Tpy 26Uij + 2 @Mk + @S - $% d& 
II 

Since p is independent of the chemical reaction we write 

P =%~afM’) 

where p. is the initial mass per unit volume. 
We derive 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 
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hence 
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(6.6) 

where 

(Pk =+k+% (6.7) 

defines a mixed convective potential which takes into account the body force potential Ce. 
Finally we consider the inertia forces. In order to avoid undue complications which do not add 

significantly to the physical accuracy we introduce some simplifying assumptions. A more accurate 
evaluation of the inertia forces will be found in an earlier paper dealing with fluid saturated porous 
solids [8]. We shall assume that the inertia forces are due mainly to the acceleration iii and the time 
derivative of the momentum plii of the solid. Per unit initial volume the virtual work of the inertia 
forces is 

6.8) 

In this expression A is the domain occupied after deformation by an element of the solid 
initially of unit volume, pk = mk/A is the partial density of substance k after deformation and 
Sur is the virtual displacement of the substance in Cartesian coordinates. It was shown that[8] 

We derive for the virtual work of the inertia forces 

(6.10) 

We now substitute the values (5.26), (6.6) and (6.10) in the principle of virtual dissipation (6.1). 
From relations (5.12), (5.20) and (5.23) we derive the variations 

(6.11) 

and we integrate by parts the terms in (6.1) which contains these variations. In the final result 
we cancel the factors multiplying the arbitrary variations. This yields 

ae+cg=o 
axi aSi ’ 

-A,+9$,=0. (6.12) 

These equations along with (5.24) for S* namely 

constitute a complete set of differential equations for the time evolution of the variables Uiy Mik, 
Si, ,$,, and s*. The value of Y is determined from equation (5.19) while Mk is derived from 
(5.12). 
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7. ADDITIONAL AXIOMS AND NEW DEFINITION OF THE CHEMICAL POTENTIAL 

The thermodynamic functions derived in the foregoing analysis are based exclusively on the 
axioms of classical thermodynamics. It is possible to proceed further and derive ther- 
modynamic functions analogous to those associated with the axioms of quantum statistics. 
However in deriving these results we may bypass completely the statistical treatment by 
introducing two very simple axioms and by this process obtain a new definition of the chemical 
potential. 

Let us go back to expressions (3.15) and (3.20) for the affinity and the heat of reaction. We 
assume that we may write 

Axiom (a) &,r = 9 vk rTd& + 2 v,&(O) 

p&“c, 
Axiom (b) !QVk T 

I 
d&. 

eq 0 

(7.1) 

(7.2) 

Note that Axiom (b) implies Nemts’ third principle. The lower limit of the integrals in (7.1) and 
(7.2) is the state of absolute zero and it is assumed that the integration may be performed as a 
limiting process by extrapolation. We further assume that the constants of integration <k(O) are 
characteristic of the pure substances and independent of the chemical reactions. These 
constants are considered to be derived by measuring heats of reaction for a sufficient number of 
cases. In principle they may also be obtained from quantum statistics but in fact this is seldom 
practical. 

Substitution of the values (7.1) and (7.2) into expression (3.20) for the affinity yields 

A = -2 v#k (7.3) 

where 

(7.4) 

,fbs = 
PP 

dek +&k(O) d&. (7.5) 

Equation (7.3) expresses the affinity in the traditional form with a new definition (7.4) of the 
chemical potential. 

In the previous sections we have defined the entropy Y as a collective concept which 
depends on the state of the supply cells. We may consider the particular case where the supply 
cells are all in the state of absolute zero temberature and extrapolate to this case the results 
obtained in Section 3 from classical thermobynamics. To simplify the writing consider the case 
of a single reaction 6. The entropy differential (3.9) becomes 

where Sk has been replaced by Sgbs as expressed by (7.5). We may also write relation (3.20) in 
the form 

$ = i vk@ - !& (7.7) 

Substituting this value into (7.6), taking into account the relation 

d??lk = dMk + vk d,$ (7.8) 

SS Vol. 14, No. II-B 
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we obtain 
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d$f’= k fibs d mk-Ld.$+dsT. $- 

On the other hand we may write 

T dSr = hpT d[ + 2 hk”’ dMk + hii deij + C dT. 

Also by definition 

6 d5 = ( hpT - 2 Qhk”) d,$ 

(7.9) 

(7.10) 

(7.11) m 

Using relations (7.8), (7.10) and (7.11), the value (7.9) of the entropy differential becomes e 

dY = 2 (Sjjbr+y) dmk +$deii +gdT. (7.12) 

The coefficients Szbs, hkm, hii and C are functions only of mk, Eii and T. Hence integration of 
(7.12) yields 

l!f = Y(mk, Eii, T) (7.13) 

as a function of the same variables. This expression is valid whether mk results from chemical 
reactions or convection. 

We may also derive the cell potential in terms of the chemical potential p~k by writing the 
convective potential as 

+k=Fk-POk (7.14) 

where ,.& is the chemical potential of the substance in the supply cell. With the value (7.3) of A 
and taking into account relation (7.8) we write (3.10) in the form 

%S 

d$ = &&k dT?lk + 0 dY - 2 ,.‘Ok dMk. (7.15) 

0 
If we assume the supply cells to be at absolute zero, this becomes 

d$ = A,.& dr?lk + tJ dY - 2 ek(0) dMk. (7.16) 

Hence the value of 8; still depends on Mk unless we neglect ek(0). On the other hand if we 
consider a continuum with zero variation of the total mass of each substance in the domain a, 

I SMkdR=O 
n 

we obtain for the variation of the total collective potential 

(7.17) 

(7.18) 

This value depends only on Smk and SK 
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8. COMPLEMENTARYFORMOFTHEFIELDEQUATIONS 

Let us neglect the inertia term--ii@~/axi in the field equations (6.12). Physically this means 
that we neglect the effect of inertia forces on the diffusion process. The second and third equations 
(6.12) become 

where 

(8.1) 

(8.2) 

Equations (8.1) are linear in ni,” and Si. They may be solved for &fF and S’i and the solution 
may be written 

(8.3) 

where 9’ is the dissipation function 9 expressed as a quadratic form in Xik and Xi instead of 
i@’ and S’i. By substituting the values (8.3) into (5.12) and (5.20) we obtain 

. 

On the other hand the time derivation of (4.12) yields 

nil,=&fk+ f: Vk&=Il;lk+ LPf v p 

(8.4) 

(8.5) 

where fp(eij, mk, T) is the rate of reaction (4.18). AISO from (5.19) and (5.24) substituting Ap(Eij, 
mk, T) instead of 9$, and f, for &, we write 

(8.6) 

Combining equations (8.4)-(8.6) and adding the first group of the field equations (6.12) we obtain 

(8.7) 

The entropy 9’ as well as other variables in these equations are expressed in terms of the 
unknowns Ui, m1, and T. The time evolution of these variables is governed by the complemen- 
tary form (8.7) of the field equations[6]. 

9. LAGRANGIANEQUATIONS 

The principle of virtual dissipation (5.11) may be applied to derive directly Lagrangian 
equations which govern the evolution of complex systems described by generalized coor- 
dinates. The fields are approximated by the expressions 
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Mj“ = @(qiv XI, f) 

sj = SjCSiv Xl, t) 

& = Sp(G Xb t) (9.1) 

where qi are generalized coordinates to be determined as functions of time. In a large number of 
problems the entropy produced s* does not contribute significantly to the values of the state 
variables. Hence in this case suitably chosen generalized coordinates qi are sufficient to 
describe the state of the system. The mixed collective potential is evaluated as 

9 = g(4iv t) (9.2) 5 

and the rate of dissipation expressed in generalized coordinates is 

TS* dR = i Ri4i + 20 

-’ 

(9.3) 

where 

(9.4) 

The virtual dissipation is then 

1, T& * dR = i (& + $) 6qi. 
I 

The virtual work of the inertia forces is approximated as 

(9.5) 

(9.6) 

. 
Hence the generalized inertia is d 

(9.7) 
* 

special care must be exercised in evaluating the variation 6C-P = &S since the variational 
principle assumes that the normal components of SM/‘ and SSi are zero at the boundary of fi a 
condition which is not obeyed by using expressions (9.1) in evaluating the variations. Hence 
SMi” and 6Si are now discontinuous at the boundary and the terms containing 6M’ and Ss are 
infinite and yield a finite contribution at this boundary. This contribution is easily evaluated by 
integrating by parts. We derive 

where A is the boundary of the initial domain and nj its unit outward normal. 
Finally the virtual work of the surface tractions fj per unit initial area is 

(9.8) 

(9.9) 

Substitution of expressions (9.5), (9.6), (9.8) and (9.9) into the variational principle (5.11) with 
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arbitrary variations Sqi yields the Lagrangian equations 

901 

where 

Qi=f (fi$f-i aq. nJ aq. J) 
qkdM: .-&fin, dA 

A I i I 

(9.10) 

(9.11) 

is a mixed mechanical and thermodynamic driving force which represents the effect of the 
environment. Equations (9.10) are in the same form as derived from the general Lagrangian 
thermodynamics[3, 6, 8, 91. 

When the effect of entropy produced, on the state variable, is not negligible we may 
introduce additional generalized coordinates 4: and write 

s* = s*(q:, XJ, t). (9.12) 

The unknowns 4: are now included in the Lagrangian equations (9.10). Additional equa- 
tions for 4: are then obtained by writing eqn (6.13) 

Ts* = 2 .%&& + 2Ca (9.13) 

at suitably chosen points equal in number to the number of additional coordinates q:. 
We may also express the generalized inertia force Ii approximately by means of the kinetic 

energy as follows. We integrate eqn (9.6) with respect to time assuming the variations to vanish 
at the limits of integration. We derive 

(9.14) 

We denote by 

pijtij dh (9.15) 

the approximate kinetic energy and by ST the variation of 9 due only to the variation of tii. 
Equation (9.14) may then be written 

This relation being valid for arbitrary variation Sqi implies 

(9.16) 

(9.17) 

The derivative H/l/dqi is evaluated by assuming p independent of 4;. With this value of Ii the 
Lagrangian equations (9.10) are written 

(9.18) 

10. APPLICATION TO BIOLOGICAL SYSTEMS 

Biological systems are open deformable systems exchanging matter work and energy with 
the environment, while chemical reactions coupled to thermomolecular diffusion occur inter- 
nally. Such systems of considerable complexity are eminently suited to a simplified description 
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by generalized coordinates whose evolution obeys the Lagrangian equations (9.18). In particular 
this Lagrangian formulation has been applied by the author to biological membranes with active 
transport[6]. Theories developed by Katchalsky[N] and others are shown to be considerably 
simplified by the Lagrangian formulation which in addition attains a high degree of generality. 
The example treated provides an excellent illustration of the power of the method by providing 
an easy evaluation of the coupling coefficients between external flows through the membrane as 
influenced by coupled internal chemical reactions. The phenomenon is called active transport 
because some of the flows occur against the concentration gradient. 

11. FINITE ELEMENT METHODS 

The Lagrangian formulation provides the foundation of a large variety of finite element 
methods, choosing as generalized coordinates, values of the field variables at the vertices of a 
lattice dividing the continuum into finite elements. Equations (9.1) and (9.12) may then be 
considered as interpolation formulas giving the values of the field in the finite elements or in 
small groups of such elements. All kinds of interpolation formulas may be used, such as linear 
quadratic or others, leading to a large variety of techniques. 

12. APPLICATION TO PLASTICITY AND ANALOGY WITH CHEMICAL REACTIONS 

A natural extension of the technique of internal coordinates as introduced by the author[l- 
31 was applied to describe plastic properties[3]. It is of interest to point out that this may be 
achieved by including in the virtual dissipation terms of the type 

T&Y * = @6qij (12.1) 

where 6qij is the variation of an internal plastic strain due to dislocation motion and %ij is a 
function of the local state and dip The variables qij are treated as internal generalized plastic 
coordinates. Comparing with expression (5.26) the analogy with chemical reactions is obvious 
and Bij is the tensor equivalent of the afinity .6& 

13. PHASE CHANGES AND CRYSTALIZATION UNDER STRESS 

When the solid contains small crystal grains it may be approximated as a continuum. The 
state of an element of this continuum may then be defined by the external variables and by a 
large number of generalized internal variables which describe the microthermodynamic state of 
the element. These variables may correspond to crystal geometry, local strains and tempera- 
tures. There may also be present a number of different phases containing each a certain number 
of pure substances. The cell potential may then be expressed in terms of these external and 
internal variables, and the rate of dissipation in terms of these variables and their time 
derivatives. Application of the principle of virtual dissipation to this case yields field equations 
of the same type as (6.12) including the internal coordinates of the microthermodynamics. 
Creep may result due to crystals dissolving at some points and recrystalizing at others, because 
of disequilibrium in the microthermodynamics. 

14. APPLICATION TO POROUS SOLIDS 

The foregoing results are applicable to a large category of porous solids when the motion of 
the pore fluid relative to the solid may be treated thermodynamically as a diffusion. This 
problem has been discussed in more detail earlier[f]. 

15. HEREDITY AS A RESULT OF THE PRESENCE OF INTERNAL COORDINATES 

The variational principle applied to a system with internal coordinates yields for the 
response of external coordinates a response which exhibits heredity. This approach was 
initiated for linear viscoelasticity in 1954[1] and extended to non linear viscoelasticity13, 191. 
Equations (4.24) for the response of a deformable cell govern a system where the heredity is the 
result of internal chemical reactions. With quasi reversible reactions (4.27) it behaves as a 
nonlinear viscoelastic solid [3]. 
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16. SOLID UNDER INITIAL STRESS 

A particular case of the present theory is that of a solid in thermodynamic and mechanical 
equilibrium under initial stress. Small departures from equilibrium are then considered, with 
small displacements and small perturbations of the thermodynamic variables, including ther- 
momolecular diffusion and chemical reactions. The problem has been analyzed in detail [9] and 
constitutes a direct application of the linear thermodynamics developed already in 1954-55 [ 1, 
21. A considerable simplification results in this case due to the fact that sT, the entropy due to 
thermal convection, is a state variable replacing the cell entropy .Y. It is also important in this 
case to use the definition (4.1) of the strain or definitions of the type (4.7). Green’s tensor (4.2) is 
not suitable because it leads to spurious complications. The theory of initially stressed solids, 
for isothermal or adiabatic deformations without chemical reactions or molecular diffusion, was 
treated extensively in a monograph[l3]. Note that the problem is not treated as a bifurcation 
but as a small deviation from an equilibtium state. The theory is therefore more general since 
no reference is required to an originally unstressed state which may not exist physically. 
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