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Heat Conduction and Convection* 

by M. A. BIOT 

Consultant, New York, N. Y. 

ABSTIIACT: Complementary forms of the variational principle for heat convectioll are de- 
veloped. They are applicable to non-homogeneous jluids with temperature dependent properties 
and include the case of turbulent +/low. For linear problems following a general procedure 
introduced by the author for non-sdjadjoint operators, the vaGdona1 principle is expressed 
in operational symbolism which includes implicitly a convolution form. 

Introduction 

The fluid may be heterogeneous with temperature dependent properties 
different for each fluid particle. Turbulent flow is included. The basic equations 
for heat convection are (1) 

Ji = -kij 2, 
I 

Dh dJi 
E + z. = 0. 

, 
(2) 

The following quantities and definitions are used, D/Dt = a/at + vi(a/&) s 
It is assumed that the velocity Vi satisfies at least approximately the condition 
&i/&i = 0 of incompressibility, xi = coordinates of a fluid particle at time t. 
6 = temperature field. kij = i&i = Jcij(x,+, t, 0)) sum of the molecular and “tur- 
bulent conductivity”. Xi = coordinates of a fluid particle at t = 0 with xi = 
xi(Xk, 1) assumed to be given functions of initial coordinates and time 

I 
e 

h= CL%, 0) de, 
0 

heat content of a fluid particle where c(Xk, 0) is the heat capacity of a fluid par- 
ticle per unit volume. The particular case of pure conduction is included in these 
equations by putting Vi = 0. 

*This work was bupported by the A. F. Office of Scientific Research of the Office of Aerospace 
Research under contract AF 49(638)-1329. 
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Fundamental Variational Form 

Introduction of the heat displacement as a variable conjugate to the temper- 
ature extended to heat transfer the fundamental methods of analytical dy- 
namics. This was developed in detail earlier. The most general variational for- 
mulation in terms of heat displacement was derived in a recent paper (1) and 
is expressed as follows. 

Equation 2 which expresses heat conservation is satisfied identically by 
putting 

Ji = 5 - v&, (3) 

h 
aHi =- 
axi . 

(4) 

The vector Hi is an unknown heat displacement field. Equation 1 is then re- 
placed by the variational equivalent 

6Hi do = 0. (5) 

The Xii)s are the elements of the inverse matrix of kij 

[Au] = [lCij]-'. (6) 

The heat displacement field is expressed as 

Hi = Hi(qj, xkj t> (7) 

by means of n generalized coordinates qj. We have shown that the variational 
Eq. 5 implies n differential equations for qj in the Lagrangian form 

where 

Qi = 

v= 

(9) 
D= 

Qi = 

5: + a:. = Qi (8) , 

dqi 

dt 

lu+ 1 0 dh = thermal potential 

1 

2 I /// 
X+JiJj dr = dissipation function 

-11 A 
8nj $dA thermal force 

i 
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The surface integral defining the thermal force is extended to the boundary A 
of the volume 7 and nj is the unit outward normal to the surface. 

Complementary Variational Form 

An obvious alternate procedure is to satisfy identically Eq. 1 which is then 
considered as defining Ji in terms of an unknown temperature field 8. The energy 
conservation Eq. 2 is now replaced by its equivalent variational form 

The convected derivative term may be written 

Dh ae de -= 
Dt 

c -$, + cvi - . 
dxi 

(11) 

The fluid may be heterogeneous, with temperature-dependent properties. Hence, 
in general, c = c (Q, t, 8). The temperature field is made equal to a function of 
n generalized coordinates qj 

Hence, 
0 = 0(&j xk, t> - (12) 

ije = ae G, @Ii 
I 

(13) 

(14) 

The term [@/at] is put in brackets to indicate that it is different from se/at 
in Eq. 11. From Eq. 14 we derive 

ae a6 -=- 
aqi hji 

(15) 

hence 

(16) 

After integrating by parts the term dJ;/axi in Eq. 10 and using for 68 the values 
Eqs. 13 and 16 the variational Eq. 10 becomes 

We derive the following n differential equations for the generalized coordinates 

g + Li + Ki = Pi 
* 
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with 

a!3 ae 
cvj-- -dr 

dXj aqi 
(19) 

pi = - Jjaj 5 dA. 
z 

The term Li is convective, while Ki is dissipative. In principle, Jj is expressed 
in terms of 6 by Eq. 1. However, the assumed distribution of 0 may imply dis- 
continuous derivatives. In this case accuracy will be improved by using a smooth 
distribution of Ji which departs from the strict definition Eq. 1. The boundary 
term Pi disappears at boundaries where there are no heat fluxes (Ji = 0) or at 
those where the temperatures are given functions of the time. 

The term Pi appears : a) at boundaries where the heat flux Jini is a prescribed 
function of t and %k; b) at boundaries with heat transfer and unknown temper- 
atures. Note that Eqs. 18 are applicable for the general case of a nonhomogeneous 
fluid with temperature dependent properties; hence, for c and kij, functions of 
zk, t, and 0 with or wit’hout turbulent flow. 

Some particular cases of interest are discussed next. 

Temperature-independent Conductivity 

If the thermal conductivity kij = kid is independent of the temperature the 
term Ki may be written 

with a dissipation function 

Equations 18 become 

g, + ‘t, + Li = Pi. 
1 z 

(21) 

CZJ 

This result may be extended to a temperature-dependent conductivity provided it 
is of the form 

kij = ki{(xk, t)f(e). (23) 
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In this case we put 

24 = 
/ 
Bf(@ 0% 

0 

and write 

/ 

e 
h= c’ (x/c, e> de 

0 

(24) 

(25) 

The variable u plays the role of a temperature in a medium of heat capacity 
c’ and thermal conductivity kij’. The latter is now independent of the temper- 
ature. 

Heat Conduction. For pure heat conduction without convection (vi = 0) , 
the term Li disappears. Equation 18 is then reduced to 

$ _t Ki = Pi 
I 

and Eq. 22 for temperature-independent conductivity becomes 

-$ f g, = Pi. * , 

(26) 

(27) 

Operational Method. Assuming that c and kij depend only on the coordi- 
nates and combining Eqs. 1 and 2 leads to the linear operational equation 

de 
p& fcv$ _ d k..- &-J 

dXi dXi ( > ” dXj 

with the operator 

a 
P=$. 

!,, ‘, ,’ 

(28) 

Variational principles in operational form for dissipative systems and non- 
selfadjoint equations were introduced by the author (2, 3) in the context of 
coupled thermoelasticity and viscoelasticity, and applied extensively to many 
types of problems. The method is based on a fundamental property of the opera- 
tional formalism, namely, that the result may be interpreted either as an integro- 
differential expression or as a Laplace transform. For example, the differential 
Eq. 28 may be considered to apply to the Laplace transform of 8. We then write 
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Eq. 28 in the form 

(30) 

The symbolic significance of this equation is obtained by considering f3 to repre- 
sent the Laplace transform of itself, namely 

s(e) = 
/ 

ao e-p”e ( t’ ) dt’. (31) 
0 

A.s a consequence, Eq. 30 leads to the following operator-variational principle, 

pw + SD + /// CV~ & 68 do = ---I/ Jim 68 dA 
r A 

(32) 

where 

v=X.. 
ce2 dr. (33) 

, 

For pure heat conduction, Eq. 32 is simplified to 

pSV + 6D = -// Jini 60 dA. (34) 
A 

This is the complementary form of the operator-variational principle derived 
earlier in the context of coupled thermoelasticity (3). 

Various Interpretations of the Operator-Variational Principle 

It is possible to interpret the variational Eq. 32 in various ways. 
Consider 0 to be represented as a linear superposition of fixed configurations 

e = &(X)@(t) (35) 

where &(z) are given scalar fields and qi are generalized coordinates. Equation 
35 remains formally the same when 0 and qr represent symbolically their Laplace 
transforms. With this interpretation in mind we substitute exnression 35 into 
Eq. 32. We obtain 

av 
’ aqi , 

- + E, + Li = Pi. 

Going back to time variables with p = d/dt relations 36 represent 
set of differential equations for the generalized coordinates qi. 
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The operator-variational principle Eq. 32 may also be interpreted in terms 
of convolutions since the various terms are products of Laplace transforms. Con- 
sider for example the term 

(37) 

By a well known property concerning the product of Laplace transforms 

pecw = j’e(t - t’) se(t’) 02’. (33) 
0 

Similar convolutions are obtained for the other terms. 

As can be seen the operational symbolism provides a powerful and compact 
formulation of variational principles which may be interpreted immediately in 
terms of differential and integral equations or convolutions. Among many ad- 
vantages the operational symbolism brings out the important property of com- 
mutativity. 

The method is quite general and is applicable to time operators which are not 
equired to be self-adjoint. 

Comparative Accuracy of the Complementary Form 

Attention is called to a particular feature of the complementary form of the 
variational principle, namely, that it involves a space differentiation of the 
temperature field. As a consequence, it will generally be less accurate than the 
fundamental form in numerical applications. 
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